

Quantum automorphism groups of connected locally finite graphs and quantizations of finitely generated groups

Quantum Groups Seminar

22 November 2022

Stefaan Vaes - KU Leuven

Quantum automorphism groups of finite graphs

Definition (Bichon 1999, Banica 2003)

The quantum automorphism group QAut Π of a finite graph Π with vertex set I is the compact quantum group generated by an $I \times I$ unitary representation $(u_{ij})_{i,j \in I}$ satisfying

$$lackbox{} u_{ij} = u_{ij}^* = u_{ij}^2$$
 and $\sum_{k \in I} u_{ik} = 1 = \sum_{k \in I} u_{kj}$ magic unitary U

- $\sum_{k:k\sim i}u_{ik}=\sum_{k:k\sim i}u_{kj}\qquad \qquad UA=AU, \text{ where }A\text{ is the adjacency matrix}$
- Closed quantum subgroup of S_n^+ with n = |I|. Not necessarily a finite quantum group.
- The map $u_{ij} \mapsto \operatorname{indicator} \{ \sigma \in \operatorname{Aut} \Pi \mid i = \sigma(j) \}$ turns $\operatorname{Aut} \Pi$ in a closed quantum subgroup of $\operatorname{QAut} \Pi$.

A rich source of compact quantum groups

Schmidt 2019: graphs with disjoint automorphisms have quantum symmetry

Let Π be a finite graph with vertex set $I = I_1 \sqcup I_2$. Denote by G_k the group of automorphisms σ s.t. $\sigma(i) = i$ for all $i \in I_k$.

- ▶ If both G_1 and G_2 are nontrivial, then Π has quantum symmetry: Aut $\Pi \neq QAut \Pi$.
- ▶ If moreover $|G_1| + |G_2| \ge 5$, then QAut Π is not even co-amenable.

Theorem (combining Kuperberg 1996, Arano 2014 and Edge 2019)

If Π is the Higman-Sims graph, then $\mathbb{G} = \mathsf{QAut}\,\Pi$ is monoidally equivalent with $\mathsf{SO}_q(5)$.

- ightharpoonup has property (T) and is infinite,
- but the fusion rules of G are abelian.

Quantum automorphism groups of infinite graphs

Main goal: construct $QAut \Pi$ for infinite graphs Π , as a locally compact quantum group.

- ightharpoonup The classical Aut Π is a topological group for the topology of pointwise convergence.
- ► In this way, Aut П is only a Polish group.
- ▶ If Π is connected and locally finite, then Aut Π is a locally compact group.

More precise goal: construct the locally compact quantum group $QAut\Pi$ for connected locally finite graphs Π .

- Joint work with Lukas Rollier
- A rich class of new examples of locally compact quantum groups.

Example: QAut(*d*-regular tree)

Some graph theory conventions

A graph is a pair (I, E) of a vertex set I and a subset $E \subset I \times I$ of edges such that $(i, j) \in E$ whenever $(j, i) \in E$.

- No orientation, no multiple edges.
- Loops are allowed.
- The automorphism group Aut Π of a graph $\Pi = (I, E)$ consists of all permutations $\sigma: I \to I$ such that $(\sigma \times \sigma)(E) = E$.
 - ▶ A path $(i_0, ..., i_n)$ is a sequence of vertices with $i_{k-1} \sim i_k$ connectedness
 - ▶ Degree deg $i = \#\{j \mid j \sim i\}$ local finiteness

A multiplier Hopf *-algebra

Let Π be a connected locally finite graph with vertex set I.

The underlying *-algebra

There is a unique universal *-algebra \mathcal{A} with generators $(u_{ij})_{i,j\in I}$ satisfying:

- lacksquare $\sum_{k\in I}u_{ik}=1=\sum_{k\in J}u_{kj}$ strictly, and $\sum_{k:k\sim j}u_{ik}=\sum_{k:k\sim i}u_{kj}$

There is a unique nondegenerate *-hom $\Delta: \mathcal{A} \to M(\mathcal{A} \otimes \mathcal{A}): \Delta(u_{ij}) = \sum_{k \in I} u_{ik} \otimes u_{kj}$ strictly.

- **Easy:** the pair (A, Δ) is a **multiplier Hopf** *-algebra in the sense of Van Daele.
- **Difficult:** existence of the Haar measure.

Existence of the Haar measure

Theorem (Rollier-V 2022)

The multiplier Hopf *-algebra (A, Δ) associated with a connected locally finite graph Π admits a positive faithful left invariant functional φ and a positive faithful right invariant functional ψ .

- This means that (A, Δ) is an **algebraic quantum group** in the sense of Kustermans and Van Daele.
- **>** By their work: the C*-algebra and von Neumann algebra completion in the GNS-construction of φ automatically gives a **locally compact quantum group**.
- Notation: QAut Π. Note that Aut Π is a closed quantum subgroup of QAut Π.
- We have $S^2=\operatorname{id}$. The functionals φ and ψ are tracial, but need not be equal (non-unimodularity).

A unitary tensor category approach

A construction of Arano-V, 2016

Let G be a locally compact group and $G \cap I$ a transitive action on a countable set.

Consider the $\ell^{\infty}(I)$ -Hilbert-bimodules \mathcal{H} that are

- ▶ of finite type: $p_i \cdot \mathcal{H}$ and $\mathcal{H} \cdot p_i$ have finite dim for every minimal projection $p_i \in \ell^{\infty}(I)$,
- ▶ **G-equivariant**: unitary rep $\pi: G \to \mathcal{U}(\mathcal{H})$ such that $\pi(g)(p_i \cdot \mathcal{H} \cdot p_j) = p_{g \cdot i} \cdot \mathcal{H} \cdot p_{g \cdot j}$.

Together with $\mathcal{H} \otimes_I \mathcal{K} = \bigoplus_{i \in I} (\mathcal{H} \cdot p_i \otimes p_i \cdot \mathcal{K})$, we get a unitary tensor category $\mathcal{C}(G \curvearrowright I)$.

Theorem (Arano-V, 2016)

For I = G/K with $K \subset G$ a compact open subgroup, the Drinfeld center of $\mathcal{C}(G \curvearrowright I)$ and the quantum double of G are equivalent.

Approach to construct the Haar measure on QAut Π

Let Π be a connected locally finite graph with vertex set I.

- ▶ We first define a unitary tensor category $\mathcal{C}(\Pi)$.
- ▶ We use this as a tool to construct the Haar functionals on the multiplier Hopf *-algebra (A, Δ) .

So we get the locally compact quantum group $QAut \Pi$.

- ▶ We then show that $\mathcal{C}(\Pi)$ is equivalent with the unitary tensor category of QAut Π -equivariant $\ell^{\infty}(I)$ -bimodules of finite type.
- For simplicity, we are assuming here (quantum) vertex transitivity.

In general: a unitary 2-category where the 0-cells are the quantum orbits $l_a \subset I$.

The Mancinska-Roberson approach to QAut Π

Let Π be a **finite** graph with vertex set I.

- ▶ We have the fundamental representation U on $\ell^2(I)$.
- ► Consider $Mor(n, m) \subset M_{I^n \times I^m}(\mathbb{C})$, the space of morphisms between the m-fold and n-fold tensor power of U.

Theorem (Mancinska-Roberson, 2019)

We have that Mor(n, m) equals the linear span of the $I^n \times I^m$ matrices T^K , where

- $ightharpoonup \mathcal{K} = (K, x, y) \in \mathcal{P}(n, m)$ is a planar bi-labeled graph, $x \in V(K)^n$ and $y \in V(K)^m$,
- $ightharpoonup T_{ij}^{\mathcal{K}} = \#\{\varphi: V(K) \to I \mid \varphi \text{ is a graph homomorphism, and } \varphi(x) = i, \varphi(y) = j\}.$
- We consider a variant of this, to define a unitary tensor category of $\ell^{\infty}(I)$ -bimodules of finite type.

A unitary tensor category of a connected locally finite graph Π

Let Π be a connected locally finite graph with vertex set I. Assume vertex transitivity.

Notations

- \triangleright $\mathcal{L}(n, m)$ is the set of all connected planar bi-labeled graphs $(K, x, y) \in \mathcal{P}(n+1, m+1)$ with $x_0 = y_0$ and $x_n = y_m$.
- ▶ Mor(n, m) is the linear span of all $I^{n+1} \times I^{m+1}$ matrices $T^{\mathcal{K}}$ with $\mathcal{K} \in \mathcal{L}(n, m)$.

All $T \in \text{Mor}(n, m)$ define bounded $\ell^{\infty}(I)$ -bimodular operators from $\ell^{2}(I^{m+1})$ to $\ell^{2}(I^{n+1})$.

Theorem (Rollier-V, 2022)

We can define a unitary tensor category $\mathcal{C}(\Pi)$ in which

- ▶ the objects are (finite direct sums of) projections in Mor(n, n), $n \in \mathbb{N}$.
- ▶ the $P \operatorname{Mor}(n, m) Q$ are the morphism spaces, and $P \otimes_{I} Q$ is the tensor product.

A formula for the Haar measure on QAut Π

Let Π be a connected locally finite graph with vertex set I. Assume vertex transitivity.

Theorem (Rollier-V, 2022)

Fix a base vertex
$$e \in I$$
. The formula $\varphi_e(u_{i_1j_1} \cdots u_{i_nj_n}) = \sum_{k \in I} \sum_{V \in \mathsf{onb}} V_{kik,k} \overline{V_{eje,e}}$

where onb is an orthonormal basis of isometries in Mor(n+1,0) defines a faithful, positive, left invariant functional on the multiplier Hopf *-algebra (A, Δ) .

- There is a (unique up to multiple) function $\mu: I \to (0, +\infty)$ such that $\varphi_e(u_{ii}) = \mu_i \mu_e^{-1}$ and $\mu_f \varphi_f = \mu_e \varphi_e$.
- ▶ The modular element is $\delta = \sum_{i \in I} \mu_i \mu_i^{-1} u_{ij}$, independently of $j \in I$.
- ▶ Without vertex transitivity: first define quantum orbits $I_a \subset I$; then a unitary 2-category $\mathcal{C}(\Pi)$; then φ_e ; and finally $u_{ij} \neq 0$ iff i and j lie in the same quantum orbit.

Quantum automorphism groups of Cayley graphs

Let Γ be a discrete group with finite symmetric generating set $S = S^{-1} \subset \Gamma$.

- The Cayley graph Π has vertex set Γ and edge set $\{(g,h) \in \Gamma \times \Gamma \mid g^{-1}h \in S\}$.
- Using V-Valvekens (2018), the unitary tensor category $\mathcal{C}(\Pi)$ has a canonical fiber functor.

Theorem (Rollier-V, 2022)

The resulting compact quantum group \mathbb{G} is the universal compact quantum group generated by an $S \times S$ unitary representation U such that for every $n \geq 2$, the following vector $\xi_n \in \ell^2(S^n)$ is invariant under the n-fold tensor power of U.

$$\xi_n(s_1,\ldots,s_n)=1$$
 if $s_1\cdots s_n=e$ and $\xi_n(s_1,\ldots,s_n)=0$ otherwise.

 \sim Canonical surjective $\pi: \mathcal{O}(\mathbb{G}) \to \mathbb{C}[\Gamma]: \pi(U_{st}) = \delta_{s,t} s$.

Quantizations of discrete groups

Definition (Rollier-V, 2022)

Let \mathbb{G} be a compact quantum group and Γ a discrete group.

When we are given a surjective Hopf *-algebra homomorphism $\pi: \mathcal{O}(\mathbb{G}) \to \mathbb{C}[\Gamma]$ that does not admit a nontrivial intermediate $\mathcal{O}(\mathbb{G}) \to \mathbb{C}[\Lambda] \to \mathbb{C}[\Gamma]$, we call $\widehat{\mathbb{G}}$ a quantization of Γ .

- We call the universal compact quantum group associated with (Γ, S) the **planar quantization** of (Γ, S) .
 - ▶ Natural quantizations $\mathcal{O}(A_u(d)) \to \mathbb{C}[\mathbb{F}_d]$ and $\mathcal{O}(A_0(d)) \to \mathbb{C}[(\mathbb{Z}/2\mathbb{Z})^{*d}]$.
 - ▶ The planar quantization of $(\mathbb{Z}/2\mathbb{Z})^{*d}$ w.r.t. the canonical generators is the dual of the hyperoctohedral quantum group $H^+(d)$.
 - The planar quantization of \mathbb{F}_d w.r.t. the canonical generators is the dual of a **twisted** hyperoctohedral quantum group $H_J^+(2d)$.

"Single" quantum automorphisms of a graph

In a graph Π with vertex set I, write $\operatorname{rel}(i,j)=1$ if $i\sim j$ and $\operatorname{rel}(i,j)=0$ if $i\not\sim j$.

Definition (Voigt, 2022)

A quantum automorphism of a graph Π with vertex set I consists of a magic unitary $U=(u_{ij})_{i,j\in I}$ on a Hilbert space \mathcal{H} satisfying u_{ij} $u_{kl}=0$ if $\mathrm{rel}(i,k)\neq\mathrm{rel}(j,l)$.

If Π is connected and locally finite, we have the algebraic quantum group (A, Δ) .

By definition, there is a bijective correspondence between quantum automorphisms of Π and nondegenerate *-representations of the *-algebra \mathcal{A} .

Definition (Rollier-V, 2022)

Two connected locally finite graphs Π and Π' with vertex sets I and I' are said to be **quantum isomorphic** if there exists a magic unitary $V = (v_{ij})_{i \in I, j \in I'}$ on a Hilbert space \mathcal{H} satisfying v_{ij} $v_{kl} = 0$ if $\text{rel}(i, k) \neq \text{rel}(j, l)$.

Equivalent characterizations of quantum isomorphic graphs

We generalize results of Brannan – · · · – Wasilewski (2018) and Mancinska-Roberson (2019).

Theorem (Rollier-V, 2022)

For connected locally finite graphs Π and Π' , the following are equivalent.

- ightharpoonup and Π' are quantum isomorphic.
- ▶ Π and Π' are algebraically quantum isomorphic: there exists a nonzero *-algebra \mathcal{B} generated by the entries of a "magic unitary" $(v_{ij})_{i \in I, j \in I'}$ satisfying v_{ij} $v_{kl} = 0$ if $rel(i, k) \neq rel(j, l)$.
- ▶ Π and Π' are **planar isomorphic**: the number of pointed homomorphisms from any finite planar graph K to Π and Π' are equal.

Applications

Using two finite graphs that are quantum isomorphic without being isomorphic, and performing a product graph construction, we obtain:

- ► Examples where Aut Π is compact, but QAut Π is noncompact and quantum vertex transitive.
- ► Examples where Aut Π is compact, but QAut Π is nonunimodular and quantum vertex transitive.
- ► Examples where Aut Π is nonunimodular, but QAut Π is unimodular and quantum vertex transitive.