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Quantum automorphism groups of finite graphs

Definition (Bichon 1999, Banica 2003)

The quantum automorphism group QAut [l of a finite graph I with vertex set / is the
compact quantum group generated by an / x | unitary representation (ujj); jc; satisfying

> Uy = Uy = “5‘ and E up =1= g uxj  ~~—> magic unitary U
kel kel

> Z Wi = Z uj  ~—> UA= AU, where A is the adjacency matrix
k:kn~j k:k~i
® Closed quantum subgroup of S with n = |/|. Not necessarily a finite quantum group.

® The map ujj — indicator{c € Autll | i = o(j)} turns Autll in a closed quantum
subgroup of QAutIl.
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A rich source of compact quantum groups

Schmidt 2019: graphs with disjoint automorphisms have quantum symmetry

Let I1 be a finite graph with vertex set | = /; LI l». Denote by Gi the group of
automorphisms o s.t. o(i) =i for all i € I.

» If both G; and G are nontrivial, then 1 has quantum symmetry: Autl1 # QAut 1.

» |If moreover |G| + |Gz| > 5, then QAut [T is not even co-amenable.

Theorem (combining Kuperberg 1996, Arano 2014 and Edge 2019)
If I is the Higman-Sims graph, then G = QAut[1 is monoidally equivalent with SO4(5).
» G has property (T) and is infinite,

» but the fusion rules of G are abelian.
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Quantum automorphism groups of infinite graphs

Main goal: construct QAut[1 for infinite graphs I1, as a locally compact quantum group.
» The classical Autl1 is a topological group for the topology of pointwise convergence.
» In this way, Aut 1 is only a Polish group.
» If [1is connected and locally finite, then Aut[l1 is a locally compact group.

More precise goal: construct the locally compact quantum group QAut I for connected
locally finite graphs I1.

~—»> Joint work with Lukas Rollier
~—> A rich class of new examples of locally compact quantum groups.

Example: QAut(d-regular tree)
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Some graph theory conventions

A graph is a pair (/, E) of a vertex set / and a subset E C | x | of edges such that
(i,j) € E whenever (j,i) € E.

® No orientation, no multiple edges.
® |Loops are allowed.

~—> The automorphism group Aut[l1 of a graph I = (/, E) consists of all permutations
o : | — I such that (¢ x 0)(E) = E.

» A path (io,...,in) is a sequence of vertices with ix_1 ~ iy ~~—» connectedness

» Degree degi = #{j | j~ i} ~~— local finiteness
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A multiplier Hopf *-algebra

Let N be a connected locally finite graph with vertex set /.

The underlying *-algebra
There is a unique universal *-algebra A with generators (ujj); je; satisfying:

> Uk = uj= u,2 If i # j, then upuj = 0 = ugjuy;.

ij I
> S u=1=Y g strictly, and S u= 3 uy
kel keJ kiknoj kik~i

There is a unique nondegenerate *-hom A : A - M(A® A) : A(uj) = Z Uji @ Uy strictly.
kel

~—» Easy: the pair (A, A) is a multiplier Hopf *-algebra in the sense of Van Daele.

~» Difficult: existence of the Haar measure.
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Existence of the Haar measure

Theorem (Rollier-V 2022)

The multiplier Hopf x-algebra (A, A) associated with a connected locally finite graph Il
admits a positive faithful left invariant functional ¢ and a positive faithful right invariant
functional .

» This means that (A, A) is an algebraic quantum group in the sense of Kustermans
and Van Daele.

» By their work: the C*-algebra and von Neumann algebra completion in the
GNS-construction of ¢ automatically gives a locally compact quantum group.

» Notation: QAutll. Note that Autll is a closed quantum subgroup of QAutTl.

» We have S? = id. The functionals ¢ and 4 are tracial, but need not be equal
(non-unimodularity).
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A unitary tensor category approach

A construction of Arano-V, 2016

Let G be a locally compact group and G ~ [ a transitive action on a countable set.
Consider the ¢°°(/)-Hilbert-bimodules H that are
> of finite type: p;-# and H - p; have finite dim for every minimal projection p; € ¢>°(/),
» G-equivariant: unitary rep 7 : G — U(#H) such that 7(g)(pi - H - pj) = pg.i - H - Pg.j-

Together with H ®; K = GB(H - pi @ pi - KC), we get a unitary tensor category C(G ~ I).
icl

Theorem (Arano-V, 2016)

For I = G/K with K C G a compact open subgroup, the Drinfeld center of C(G ~ ) and
the quantum double of G are equivalent.
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Approach to construct the Haar measure on QAut I

Let 1 be a connected locally finite graph with vertex set /.
» We first define a unitary tensor category C(IM).

» We use this as a tool to construct the Haar functionals on the multiplier Hopf
x-algebra (A, A).

So we get the locally compact quantum group QAut I1.

» We then show that C(IM) is equivalent with the unitary tensor category of
QAut MN-equivariant £°°(/)-bimodules of finite type.

» For simplicity, we are assuming here (quantum) vertex transitivity.

In general: a unitary 2-category where the 0-cells are the quantum orbits [, C /.
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The Mancinska-Roberson approach to QAut 1
Let I be a finite graph with vertex set /.
» We have the fundamental representation U on (2(/).

» Consider Mor(n, m) C Mjnym(C), the space of morphisms between the m-fold and
n-fold tensor power of U.

Theorem (Mancinska-Roberson, 2019)

We have that Mor(n, m) equals the linear span of the /” x I™ matrices TX, where
» K =(K,x,y) € P(n,m) is a planar bi-labeled graph, x € V(K)" and y € V(K)™,
’C . : . . _ _ .
> T =#{p: V(K) = I|pis a graph homomorphism, and ¢(x) = i, p(y) = j}.

~—> We consider a variant of this, to define a unitary tensor category of ¢>°(/)-bimodules
of finite type.
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A unitary tensor category of a connected locally finite graph Il

Let 1 be a connected locally finite graph with vertex set /. Assume vertex transitivity.

Notations

» L(n, m) is the set of all connected planar bi-labeled graphs (K, x,y) € P(n+1,m+1)
with xo = yp and x, = ym.

» Mor(n, m) is the linear span of all /"t x |1 matrices T* with K € £(n, m).

All T € Mor(n, m) define bounded ¢>°(/)-bimodular operators from £2(/™+1) to £2(1™+1).

Theorem (Rollier-V, 2022)

We can define a unitary tensor category C(I1) in which
> the objects are (finite direct sums of) projections in Mor(n, n), n € N.

» the P Mor(n, m)Q are the morphism spaces, and P ®; Q is the tensor product.
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A formula for the Haar measure on QAut N

Let I1 be a connected locally finite graph with vertex set /. Assume vertex transitivity.

Theorem (Rollier-V, 2022)

Fix a base vertex e € [. The formula @e(ujj, -+ jj,) = Z Z Viik k Veje,e
kel Veonb

where onb is an orthonormal basis of isometries in Mor(n + 1,0) defines a faithful, positive,
left invariant functional on the multiplier Hopf x-algebra (A, A).

» There is a (unique up to multiple) function u : | — (0,400) such that
pe(uj) = /‘jﬂe_l and puf f = fle Pe.

» The modular element is § =, u;,uj_l ujj, independently of j € /.

» Without vertex transitivity: first define quantum orbits /, C [; then a unitary
2-category C(I1); then @.; and finally uj; # 0 iff / and j lie in the same quantum orbit.

KU LEUVEN




Quantum automorphism groups of Cayley graphs

Let I be a discrete group with finite symmetric generating set S =S~ C T
~—» The Cayley graph I has vertex set ' and edge set {(g,h) €T xT | g~th e S}.

~— Using V-Valvekens (2018), the unitary tensor category C(I1) has a canonical fiber
functor.

Theorem (Rollier-V, 2022)

The resulting compact quantum group G is the universal compact quantum group
generated by an S x S unitary representation U such that for every n > 2, the following
vector &, € £2(S") is invariant under the n-fold tensor power of U.

&n(sty...ysp) =1 if sp;---sp=e and &u(s1,...,5,) =0 otherwise.

~— Canonical surjective 7 : O(G) — C[I'] : m(Us¢) = 05t 5.
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Quantizations of discrete groups

Definition (Rollier-V, 2022)

Let G be a compact quantum group and I a discrete group.

When we are given a surjective Hopf x-algebra homomorphism 7 : O(G) — C[I'] that does
not admit a nontrivial intermediate O(G) — C[A] — C[I'], we call G a quantization of T

~—> We call the universal compact quantum group associated with (I', S)
the planar quantization of (I, S).

» Natural quantizations O(A,(d)) — C[Fy4] and O(A¢(d)) — C[(Z/2Z)*9].

» The planar quantization of (Z/27)*¢ w.r.t. the canonical generators is the dual of the
hyperoctohedral quantum group H™(d).

» The planar quantization of FFy w.r.t. the canonical generators is the dual of a twisted
hyperoctohedral quantum group Hj“(2d).
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“Single” quantum automorphisms of a graph
In a graph I with vertex set /, write rel(i,j) = 1 if i ~ j and rel(i,j) =0 if i £ j.

Definition (Voigt, 2022)

A quantum automorphism of a graph 1 with vertex set / consists of a magic unitary
U = (ujj)ijer on a Hilbert space H satisfying ujj uy = 0 if rel(i, k) # rel(j, /).

If M is connected and locally finite, we have the algebraic quantum group (A, A).

~—» By definition, there is a bijective correspondence between quantum automorphisms of
M and nondegenerate *-representations of the x-algebra A.

Definition (Rollier-V, 2022)

Two connected locally finite graphs 1 and M’ with vertex sets | and I’ are said to be
quantum isomorphic if there exists a magic unitary V = (vjj)jcs jeir on a Hilbert space H
satisfying vjj vig = 0 if rel(i, k) # rel(j, /).
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Equivalent characterizations of quantum isomorphic graphs
We generalize results of Brannan— - - - —Wasilewski (2018) and Mancinska-Roberson (2019).

Theorem (Rollier-V, 2022)

For connected locally finite graphs I and ', the following are equivalent.
» [1 and " are quantum isomorphic.

» [1 and I are algebraically quantum isomorphic: there exists a nonzero *-algebra B
generated by the entries of a “magic unitary” (vjj)ic; jei satisfying vjj viy = 0 if

rel(i, k) # rel(j, 1).

» [1 and " are planar isomorphic: the number of pointed homomorphisms from any
finite planar graph K to N and I are equal.
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Applications

Using two finite graphs that are quantum isomorphic without being isomorphic, and
performing a product graph construction, we obtain:

» Examples where Autl1 is compact, but QAut[1 is noncompact and quantum vertex

transitive.

» Examples where Autl1 is compact, but QAut[1 is nonunimodular and quantum vertex

transitive.

» Examples where Aut Il is nonunimodular, but QAutI1 is unimodular and quantum

vertex transitive.
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